H=-16t^2+285+2

Simple and best practice solution for H=-16t^2+285+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+285+2 equation:



=-16H^2+285+2
We move all terms to the left:
-(-16H^2+285+2)=0
We get rid of parentheses
16H^2-285-2=0
We add all the numbers together, and all the variables
16H^2-287=0
a = 16; b = 0; c = -287;
Δ = b2-4ac
Δ = 02-4·16·(-287)
Δ = 18368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18368}=\sqrt{64*287}=\sqrt{64}*\sqrt{287}=8\sqrt{287}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{287}}{2*16}=\frac{0-8\sqrt{287}}{32} =-\frac{8\sqrt{287}}{32} =-\frac{\sqrt{287}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{287}}{2*16}=\frac{0+8\sqrt{287}}{32} =\frac{8\sqrt{287}}{32} =\frac{\sqrt{287}}{4} $

See similar equations:

| 8(5+n)=56 | | (3n+2)/(n)=15 | | x-6/2=x | | 12-(x+3)+2x=x-18 | | |x+6|=|3x-4| | | 5x-14+51=180 | | 6x-8+4x=152 | | 20(3.8-0.6y)/4y=52 | | r-(-31)=16 | | 0.03x-0,1=2,6 | | -8.3+a=-11.12 | | 16x-19=113=6x | | 7x-1=8x-10 | | 17=w/5+4 | | 4x+7=67÷2x | | y+5y+3y+9y=0 | | 5x-9=-3x-13 | | 8/12=28/x | | 15-7=8-50+x | | 16/5x8/6x5/8x12/4= | | 6/8=x/48 | | 180=13x+50 | | 50(5)+7.5x=500 | | 180=-(4x-6) | | 15(m)=12 | | 14x-170=180 | | x/3+7=(2x+3) | | 32+5x-2=180 | | 4/10=8/x | | 6p+9​=12+5p | | 9x+1=2x-2 | | (x)(x+5)=126 |

Equations solver categories